Devoir maison de mécanique A rendre impérativement le lundi 1^{er} mars 2010 au secrétariat.

Exercice 1:

Rédigez l'exercice 5 du thème 2 du cahier de TD de mécanique.

Exercice 2:

C'est une partie de l'énoncé du CC du 02-03-09 d'une durée : 45 minutes. Afin de vous entraîner, il faut avoir réviser le cours et les TD, et être totalement disponible (pas de portable, de musique, de gâteau à grignoter ou de café à boire). Puis, vous devez faire le CC (dans un premier temps) en 35 minutes. Ensuite, à l'aide d'un autre stylo, vous complétez ou continuez l'exercice. Cette procédure vous permettra d'anticiper sur le CC du 8 mars 2010.

Soit un repère cartésien $\mathcal{R}\left(O,e_x,e_y,e_z\right)$, considéré comme galiléen. Oz est la verticale ascendante, et on associe à \mathcal{R} , la base cartésienne $\mathcal{B}=\begin{pmatrix}\mathbf{u}^{\mathsf{T}}\mathbf{u}^{\mathsf{T}}\mathbf{u}^{\mathsf{T}}\\e_x,e_y,e_z\end{pmatrix}$.

Un manège est constitué par un disque (\mathcal{D}) de rayon R et de centre O, qui tourne uniformément autour de la verticale Oz à la vitesse angulaire ω constante. On note $\mathcal{R}'\left(O,e_x,e_y,e_z\right)$ le référentiel lié au manège et $\mathcal{B}'=\begin{pmatrix} \mathbf{u}\mathbf{u} & \mathbf{u}\mathbf{u} & \mathbf{u}'\\ e_x,e_y,e_z\end{pmatrix}$ la base qui lui est associée.

A l'instant initial t = 0, un enfant, repéré par le point M, a pour coordonnées cartésiennes $(-R, 0, 0)_{g}$. Il se déplace alors suivant un diamètre du manège à vitesse constante v_o par rapport au manège.

- 1- On se place dans le référentiel R' lié au manège.
 - a) Donner l'expression de la vitesse de M par rapport à \mathcal{R}' : $v(M/\mathcal{R}')$.
 - b) En déduire les équations paramétriques de la trajectoire de l'enfant dans \mathcal{R}' .
 - c) Quelle est la courbe décrite par l'enfant dans R'?
- 2- Donner l'expression du vecteur rotation de \mathcal{R}' par rapport à $\mathcal{R}: \mathcal{\Omega}(\mathcal{R}'/\mathcal{R})$.
- 3- On étudie maintenant la trajectoire dans le référentiel R.
 - a) Rappeler la loi de composition des vitesses (on précisera tous les termes introduits).
- b) Par application de la loi énoncée en 3-a), déterminer l'expression de la vitesse de M par rapport à \mathcal{R} : $v(M/\mathcal{R})$. On l'explicitera dans la base \mathcal{B}' .
 - c) En déduire les équations paramétriques de la trajectoire suivie par l'enfant dans \mathcal{R} .
- d) Montrer que l'équation cartésienne de la trajectoire dans \mathcal{R} s'exprime sous la forme $Y = X^2$, dans laquelle on exprimera Y et X en fonction de y, x et des données du problème.
 - e) On introduit maintenant les coordonnées polaires (ρ, φ) liées à M dans $\mathcal R$.
 - i) Exprimer ρ et φ en fonction du temps et des données du problème.
 - ii) En déduire l'équation polaire de la trajectoire.
- f) Par application de la loi de composition des accélérations, déterminer, dans la base \mathcal{B}' , l'expression de l'accélération de M par rapport à \mathcal{R} : $a(M/\mathcal{R})$.